
Changhui Tan
I am a postdoctoral research associate in CSCAMM and Department of Mathematics, University of Maryland.
Application of natural neighbor interpolation method in three-dimensional geological model
Yan-jun Guo, Mao Pan, Fei Yan, Zhe Wang, Changhui Tan, and Tiao Lu
Journal of PLA University of Science and Technology (Natural Science Edition), Volume 26, No 1, pp. 185-206 (2016).
Abstract
To enhance the accuracy of three-dimensional geological model, emphasize the high local relevance characteristics of the complex geological bodies, and avoid complicated calculation and dependence on human experience in traditional interpolation methods, the natural neighbor interpolation (NNI) method was used for three-dimensional discrete data interpolation in the process of modeling. But the existing NNI method could not be applied to the boundary interpolation of finite fields, which was the most difficult problem of its application in three-dimensional geological modeling. Based on the geometry of Voronoi Cells and Delaunay Triangles, the shape function was constructed using non-Sibsonian (Laplace) interpolation method. The continuity of the boundary in NNI method was proven, the boundary interpolation was implemented and the computational complexity was reduced. The accuracy and validity of the method were proven by building the city geological model.
![]() |
doi:10.3969/j.issn.1009-3443.2009.06.026 |
![]() |
Download the Published Version |
The paper is related to the undergraduate thesis: Numerical analysis and algorithm design in natural neighbor method.
![]() |
Download the Undergraduate Thesis (In Chinese) |
Hierarchical construction of bounded solutions to divU = F
Eitan Tadmor, and Changhui Tan
"Nonlinear Partial Differential Equations", Proceedings of the 2010 Abel Symposium held in Oslo, Sep. 2010 (H. Holden & K. Karlsen eds.), Abel Symposia 7, Springer 2011, 255-269.
Abstract
We implement the hierarchical decomposition introduced in [Ta15], to construct uniformly bounded solutions of the problem \(\nabla\cdot U = F\), where the two-dimensional data is in the critical regularity space, \(F\in L^2_{\#}(\mathbb{T}^2)\). Criticality in this context, manifests itself by the lack of linear mapping, \(F\in L^2_{\#}(\mathbb{T}^2)\to U\in L^{\infty}(\mathbb{T}^2,\mathbb{R}^2)\) [BB03]. Thus, the intriguing aspect here is that although the problem is linear, the construction of its uniformly bounded solutions is not.
![]() |
doi:10.1007/978-3-642-25361-4_14 |
![]() |
Download the Published Version |
First-order aggregation models with alignment
Razvan C. Fetecau, Weiran Sun, and Changhui Tan
Physica D: Nonlinear Phenomena, Volume 325, pp. 146-163 (2016).
Abstract
We include alignment interactions in a well-studied first-order attractive–repulsive macroscopic model for aggregation. The distinctive feature of the extended model is that the equation that specifies the velocity in terms of the population density, becomes implicit, and can have non-unique solutions. We investigate the well-posedness of the model and show rigorously how it can be obtained as a macroscopic limit of a second-order kinetic equation. We work within the space of probability measures with compact support and use mass transportation ideas and the characteristic method as essential tools in the analysis. A discretization procedure that parallels the analysis is formulated and implemented numerically in one and two dimensions.
![]() |
doi:10.1016/j.physd.2016.03.011 |
![]() |
Download the Published Version |
Ph.D. Defense
I have finished my Ph.D. defense today.
Committees
Prof. Eitan Tadmor (Chair/Advisor), Prof. Pierre-Emmanuel Jabin, Prof. Dave Levermore, Prof. Antoine Mellet and Prof. Howard Elman (Dean's representative).
My thesis title is Multi-scale problems on collective dynamics and image processing.
![]() |
doi:10.13016/M2WG6T |
![]() |
Download the Ph.D. Thesis |
Critical thresholds in flocking hydrodynamics with nonlocal alignment
Eitan Tadmor, and Changhui Tan
Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences 372.2028 (2014): 20130401.
Abstract
We study the large-time behavior of Eulerian systems augmented with non-local alignment. Such systems arise as hydrodynamic descriptions of agent-based models for self-organized dynamics, e.g. Cucker & Smale (2007 IEEE Trans. Autom. Control 52, 852–862. (doi:10.1109/TAC.2007.895842)) and Motsch & Tadmor (2011 J. Stat. Phys. 144, 923–947. (doi:10.1007/s10955-011-0285-9)) models. We prove that, in analogy with the agent-based models, the presence of non-local alignment enforces strong solutions to self-organize into a macroscopic flock. This then raises the question of existence of such strong solutions. We address this question in one- and two-dimensional set-ups, proving global regularity for subcritical initial data. Indeed, we show that there exist critical thresholds in the phase space of the initial configuration which dictate the global regularity versus a finite-time blow-up. In particular, we explore the regularity of non-local alignment in the presence of vacuum.
![]() |
doi:10.1098/rsta.2013.0401 |
![]() |
Download the Published Version |
An exact rescaling velocity method for some kinetic flocking models.
Thomas Rey, and Changhui Tan
SIAM Journal on Numerical Analysis, Volume 54, No 2, pp. 641-664 (2016).
Abstract
In this work, we discuss kinetic descriptions of flocking models of the so-called Cucker–Smale [IEEE Trans. Automat. Control, 52 (2007), pp. 852–862] and Motsch–Tadmor [J. Statist. Phys., 144 (2011), pp. 923–947] types. These models are given by Vlasov-type equations where the interactions taken into account are only given long-range bi-particles interaction potentials. We introduce a new exact rescaling velocity method, inspired by the recent work [F. Filbet and T. Rey, J. Comput. Phys., 248 (2013) pp. 177–199], allowing us to observe numerically the flocking behavior of the solutions to these equations, without a need of remeshing or taking a very fine grid in the velocity space. To stabilize the exact method, we also introduce a modification of the classical upwind finite volume scheme which preserves the physical properties of the solution, such as momentum conservation.
![]() |
doi:10.1137/140993430 |
![]() |
Download the Published Version |
Leave me a message
Feel free to leave a message or start a discussion here.
Lovett instructor of Mathematics
I have recently accepted a 3-year Lovett instructor of Mathematics in Rice University. I will work with Professor Alex Kiselev.
Critical thresholds in 1D Euler equations with nonlocal forces
Jose A. Carrillo, Young-Pil Choi, Eitan Tadmor, and Changhui Tan
Mathematical Models and Methods in Applied Sciences, Volume 26, No 1, pp. 185-206 (2016).
Abstract
We study the critical thresholds for the compressible pressureless Euler equations with pairwise attractive or repulsive interaction forces and non-local alignment forces in velocity in one dimension. We provide a complete description for the critical threshold to the system without interaction forces leading to a sharp dichotomy condition between global-in-time existence or finite-time blowup of strong solutions. When the interaction forces are considered, we also give a classification of the critical thresholds according to the different type of interaction forces. We also remark on global-in-time existence when the repulsion is modeled by the isothermal pressure law.
![]() |
doi:10.1142/S0218202516500068 |
![]() |
Download the Published Version |
A discontinuous Galerkin method on kinetic flocking models
Changhui Tan
Mathematical Models and Methods in Applied Sciences, Volume 27, No 7, pp. 1199-1221 (2017).
Abstract
We study kinetic representations of flocking models. They arise from agent-based models for self-organized dynamics, such as Cucker–Smale [Emergent behaviors in flocks, IEEE Trans. Autom. Control. 52 (2007) 852–862] and Motsch–Tadmor [A new model for self-organized dynamics and its flocking behavior, J. Statist. Phys. 144 (2011) 923– 947] models. We first establish a well-posedness theory and large-time flocking behavior for the kinetic systems, which indicates a concentration in velocity variable in infinite time. We then apply a discontinuous Galerkin method to treat the asymptotic \(\delta\)-singularity, and construct high-order positive-preserving schemes to solve kinetic flocking systems.
![]() |
doi:10.1142/S0218202517400139 |
![]() |
Download the Published Version |