Symmetry and uniqueness via a variational approach

 Speaker: Yao Yao (Georgia Institute of Technology)

For some nonlocal PDEs, its steady states can be seen as critical points of an associated energy functional. Therefore, if one can construct perturbations around a function such that the energy decreases to first order along the perturbation, this function cannot be a steady state. In this talk, I will discuss how this simple variational approach has led to some recent progresses in the following equations, where the key is to carefully construct a suitable perturbation.

I will start with the aggregation-diffusion equation, which is a nonlocal PDE driven by two competing effects: nonlinear diffusion and long-range attraction. We show that all steady states are radially symmetric up to a translation (joint with Carrillo, Hittmeir and Volzone), and give some criteria on the uniqueness/non-uniqueness of steady states within the radial class (joint with Delgadino and Yan).

I will also discuss the 2D Euler equation, where we aim to understand under what condition must a stationary/uniformly-rotating solution be radially symmetric. Using a variational approach, we settle some open questions on the radial symmetry of rotating patches, and also show that any smooth stationary solution with compactly supported and nonnegative vorticity must be radial (joint with Gómez-Serrano, Park and Shi).
 

Time: April 2, 2021 2:30pm-3:30pm
Location: Virtually via Zoom
Host: Changhui Tan

  Access to the video of the talk