研究
星期三, 29 1月 2020 23:37

On a class of new nonlocal traffic flow models with look-ahead rules

 

Yi Sun, and Changhui Tan

Physica D, Volume 413, 132663 (2020).


Abstract

This paper presents a new class of one-dimensional (1D) traffic models with look-ahead rules that take into account of two effects: nonlocal slow-down effect and right-skewed non-concave asymmetry in the fundamental diagram. The proposed 1D cellular automata (CA) models with the Arrhenius type look-ahead interactions implement stochastic rules for cars’ movement following the configuration of the traffic ahead of each car. In particular, we take two different look-ahead rules: one is based on the distance from the car under consideration to the car in front of it; the other one depends on the car density ahead. Both rules feature a novel idea of multiple moves, which plays a key role in recovering the non-concave flux in the macroscopic dynamics. Through a semi-discrete mesoscopic stochastic process, we derive the coarse-grained macroscopic dynamics of the CA model. We also design a numerical scheme to simulate the proposed CA models with an efficient list-based kinetic Monte Carlo (KMC) algorithm. Our results show that the fluxes of the KMC simulations agree with the coarse-grained macroscopic averaged fluxes for the different look-ahead rules under various parameter settings.


   doi:10.1016/j.physd.2020.132663
 Download the Published Version
 This work is supported by NSF grant DMS #1853001
 This work is supported by a UofSC VPR ASPIRE I grant
Read 3913 times Last modified on 星期一, 19 7月 2021 12:20