Displaying items by tag: Image processing
Hierarchical construction of bounded solutions to divU = F
Eitan Tadmor, and Changhui Tan
"Nonlinear Partial Differential Equations", Proceedings of the 2010 Abel Symposium held in Oslo, Sep. 2010 (H. Holden & K. Karlsen eds.), Abel Symposia 7, Springer 2011, 255-269.
Abstract
We implement the hierarchical decomposition introduced in [Ta15], to construct uniformly bounded solutions of the problem \(\nabla\cdot U = F\), where the two-dimensional data is in the critical regularity space, \(F\in L^2_{\#}(\mathbb{T}^2)\). Criticality in this context, manifests itself by the lack of linear mapping, \(F\in L^2_{\#}(\mathbb{T}^2)\to U\in L^{\infty}(\mathbb{T}^2,\mathbb{R}^2)\) [BB03]. Thus, the intriguing aspect here is that although the problem is linear, the construction of its uniformly bounded solutions is not.
doi:10.1007/978-3-642-25361-4_14 | |
Download the Published Version |