Displaying items by tag: invariant region
Asymptotic behaviors for the compressible Euler system with nonlinear velocity alignment
McKenzie Black and Changhui Tan
Journal of Differential Equations, Volume 380, pp. 198-227 (2024)
Abstract
We consider the pressureless compressible Euler system with a family of nonlinear velocity alignment. The system is a nonlinear extension of the Euler-alignment system in collective dynamics. We show the asymptotic emergent phenomena of the system: alignment and flocking. Different types of nonlinearity and nonlocal communication protocols are investigated, resulting in a variety of different asymptotic behaviors.
doi:10.1016/j.jde.2023.10.044 | |
Download the Published Version | |
This work is supported by NSF grants DMS #2108264 and DMS 2238219 | |
This work is supported by a UofSC VPR SPARC grant. |
Critical thresholds in the Euler-Poisson-alignment system
Manas Bhatnagar, Hailiang Liu and Changhui Tan
Journal of Differential Equations, Volume 375, pp. 82-119 (2023)
Abstract
This paper is concerned with the global wellposedness of the Euler-Poisson-alignment (EPA) system. This system arises from collective dynamics, and features two types of nonlocal interactions: the repulsive electric force and the alignment force. It is known that the repulsive electric force generates oscillatory solutions, which is difficult to be controlled by the nonlocal alignment force using conventional comparison principles. We construct invariant regions such that the solution trajectories cannot exit, and therefore obtain global wellposedness for subcritical initial data that lie in the invariant regions. Supercritical regions of initial data are also derived which leads to finite-time singularity formations. To handle the oscillation and the nonlocality, we introduce a new way to construct invariant regions piece by piece in the phase plane of a reformulation of the EPA system. Our result is extended to the case when the alignment force is weakly singular. The singularity leads to the loss of a priori bounds crucial in our analysis. With the help of improved estimates on the nonlocal quantities, we design non-trivial invariant regions that guarantee global wellposedness of the EPA system with weakly singular alignment interactions.
doi:10.1016/j.jde.2023.07.049 | |
Download the Published Version | |
This work is supported by NSF grants DMS #1853001, DMS #2108264 and DMS 2238219 |