Login
Register

Home

Research

Teaching

Events

Blog

Research
Research

Research

Here are the latest updates for Changhui Tan's research profile.

Here is the Curriculum Vitae and List of Publications.

 

Yi Sun and Changhui Tan

Physica D, Volume 446, 133657 (2023)


Abstract

This paper presents a class of one-dimensional cellular automata (CA) models on traffic flows, featuring nonlocal look-ahead interactions. We develop kinetic Monte Carlo (KMC) algorithms to simulate the dynamics. The standard KMC method can be inefficient for models with global interactions. We design an accelerated KMC method to reduce the computational complexity in the evaluation of the nonlocal transition rates. We investigate several numerical experiments to demonstrate the efficiency of the accelerated algorithm, and obtain the fundamental diagrams of the dynamics under various parameter settings.


   doi:10.1016/j.physd.2023.133657
 Download the Published Version
 This work is supported by NSF grant DMS #1853001 and DMS #2108264
 This work is supported by a UofSC VPR ASPIRE I grant

 

Thomas Hamori and Changhui Tan

Nonlinear Analysis: Real World Applications, Volume 73, 103899, (2023).


Abstract

We study a class of traffic flow models with nonlocal look-ahead interactions. The global regularity of solutions depend on the initial data. We obtain sharp critical threshold conditions that distinguish the initial data into a trichotomy: subcritical initial conditions lead to global smooth solutions, while two types of supercritical initial conditions lead to two kinds of finite time shock formations. The existence of non-trivial subcritical initial data indicates that the nonlocal look-ahead interactions can help avoid shock formations, and hence prevent the creation of traffic jams.


   doi:10.1016/j.nonrwa.2023.103899
 Download the Published Version
 This work is supported by NSF grant DMS #1853001 and DMS #2108264
 This work is supported by a UofSC VPR ASPIRE I grant

 

Manas Bhatnagar, Hailiang Liu and Changhui Tan

Journal of Differential Equations, Volume 375, pp. 82-119 (2023)


Abstract

This paper is concerned with the global wellposedness of the Euler-Poisson-alignment (EPA) system. This system arises from collective dynamics, and features two types of nonlocal interactions: the repulsive electric force and the alignment force. It is known that the repulsive electric force generates oscillatory solutions, which is difficult to be controlled by the nonlocal alignment force using conventional comparison principles. We construct invariant regions such that the solution trajectories cannot exit, and therefore obtain global wellposedness for subcritical initial data that lie in the invariant regions. Supercritical regions of initial data are also derived which leads to finite-time singularity formations. To handle the oscillation and the nonlocality, we introduce a new way to construct invariant regions piece by piece in the phase plane of a reformulation of the EPA system. Our result is extended to the case when the alignment force is weakly singular. The singularity leads to the loss of a priori bounds crucial in our analysis. With the help of improved estimates on the nonlocal quantities, we design non-trivial invariant regions that guarantee global wellposedness of the EPA system with weakly singular alignment interactions.


   doi:10.1016/j.jde.2023.07.049
 Download the Published Version
 This work is supported by NSF grants DMS #1853001, DMS #2108264 and DMS 2238219

 

Trevor M. Leslie, and Changhui Tan

Communications in Partial Differential Equations, Volume 48, No. 5, pp. 753-791 (2023)


Abstract

We develop a global wellposedness theory for weak solutions to the 1D Euler-alignment system with measure-valued density and bounded velocity. A satisfactory understanding of the low-regularity theory is an issue of pressing interest, as smooth solutions may lose regularity in finite time. However, no such theory currently exists except for a very special class of alignment interactions. We show that the dynamics of the 1D Euler-alignment system can be effectively described by a nonlocal scalar balance law, the entropy conditions of which serves as an entropic selection principle that determines a unique weak solution of the Euler-alignment system. Moreover, the distinguished weak solution of the system can be approximated by the sticky particle Cucker-Smale dynamics. Our approach is largely inspired by the work of Brenier and Grenier [SIAM J. Numer. Anal, 35(6):2317-2328, 1998] on the pressureless Euler equations.


   doi:10.1080/03605302.2023.2202720
 Download the Published Version
 This work is supported by NSF grant DMS #1853001 and DMS #2108264

 

Eitan Tadmor, and Changhui Tan

SIAM Journal on Mathematical Analysis, Volume 54, No. 4, pp. 4277-4296 (2022)


Abstract

We study the global wellposedness of the Euler-Monge-Ampère (EMA) system. We obtain a sharp, explicit critical threshold in the space of initial configurations which guarantees the global regularity of EMA system with radially symmetric initial data. The result is obtained using two independent approaches -- one using spectral dynamics of Liu & Tadmor [Comm. Math. Physics 228(3):435-466, 2002] and another based on the geometric approach of Brenier & Loeper [Geom. Funct. Analysis 14(6):1182--1218, 2004]. The results are extended to 2D radial EMA with swirl.


   doi:10.1137/21M1437767
 Download the Published Version
 This work is supported by NSF grant DMS #1853001 and DMS #2108264
Page 4 of 10