Login
Register

Home

Research

Teaching

Events

Blog

Research
Research

Research

Here are the latest updates for Changhui Tan's research profile.

Here is the Curriculum Vitae and List of Publications.

 

I have been awarded an NSF grant (DMS #2108264) on a three-year project: Nonlocal Transport Equations in Fluids, Swarming, and Traffic Flows


Abstract

Nonlocal models are relevant to many real-world phenomena and have been an area of active and growing research in recent decades. The development of a mathematical theory of nonlocal interactions plays a significant role in the understanding of complex structures, with rich applications in physics, biology, and social sciences. One example of the effects of nonlocal behavior found in nature is the collective dynamics in animal swarms, where small-scale interactions emerge into intriguing global phenomena. This project develops novel and robust analytical techniques for models that share similar nonlocality. These tools help to advance the understanding of the hidden structures of the models, and ultimately have an impact in applications, such as in traffic flow, where they can be used to study how to integrate nonlocal communications into a smart traffic network to improve efficiency and avoid traffic congestions. The training and professional development of graduate students is an integral part of the project.

The project studies three families of nonlocal transport equations. The first family includes the Euler-alignment system describing the flocking phenomenon for animal swarms. The goal is to establish a global well-posedness theory for the system in multi-dimensions, starting from imposing radial symmetry, and to apply the methodology to other models, such as the Euler-Poisson equations and more. The second includes a nonlocal transport equation which describes the evolution of the distribution of polynomial roots under repeated differentiation, the aim is to find a rigorous connection between this equation and the differentiation process. The last is a family of nonlocal traffic flow models, which have received extensive attention in the last decade, and are analyzed to understand the impact of the nonlocal interactions and how the nonlocal phenomenon can help to prevent traffic congestions.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.


   NSF award page on the grant DMS #2108264

 

Alexander Kiselev, and Changhui Tan

SIAM Journal on Mathematical Analysis, Volume 54, No. 3, pp. 3161-3191 (2022).


Abstract

In this paper, we analyze a nonlocal nonlinear partial differential equation formally derived by Stefan Steinerberger to model dynamics of roots of polynomials under differentiation. This partial differential equation is critical and bears striking resemblance to hydrodynamic models used to described collective behavior of agents (such as birds, fish or robots) in mathematical biology. We consider periodic setting and show global regularity and exponential in time convergence to uniform density for solutions corresponding to strictly positive smooth initial data.


   doi:10.1137/21M1422859
 Download the Published Version
 This work is supported by NSF grant DMS #1853001 and DMS #2108264

 

 

Alexander Kiselev, and Changhui Tan

Annals of PDE, Volume 8, No. 2, Article 16, 69pp. (2022)


Abstract

The question about behavior of gaps between zeros of polynomials under differentiation is classical and goes back to Marcel Riesz. Recently, Stefan Steinerberger formally derived a nonlocal nonlinear partial differential equation which models dynamics of roots of polynomials under differentiation. In this paper, we connect rigorously solutions of Steinerberger’s PDE and evolution of roots under differentiation for a class of trigonometric polynomials. Namely, we prove that the distribution of the zeros of the derivatives of a polynomial and the corresponding solutions of the PDE remain close for all times. The global in time control follows from the analysis of the propagation of errors equation, which turns out to be a nonlinear fractional heat equation with the main term similar to the modulated discretized fractional Laplacian \((-\Delta)^{1/2}\).


   doi:10.1007/s40818-022-00135-4
 Download the Published Version
 This work is supported by NSF grant DMS #1853001 and DMS #2108264

 

Changhui Tan

SIAM Journal on Mathematical Analysis, Volume 53, No 3, pp. 3040–3071 (2021).


Abstract

We study the global wellposedness of pressureless Eulerian dynamics in multidimensions, with radially symmetric data. Compared with the one-dimensional system, a major difference in multidimensional Eulerian dynamics is the presence of the spectral gap, which is difficult to control in general. We propose a new pair of scalar quantities that provides significantly better control of the spectral gap. Two applications are presented: (i) the Euler-Poisson equations: we show a sharp threshold condition on initial data that distinguish global regularity and finite time blowup; (ii) the Euler-alignment equations: we show a large subcritical region of initial data that leads to global smooth solutions.


   doi:10.1137/20M1358682
 Download the Published Version
 This work is supported by NSF grant DMS #1853001

 

Li Chen, Changhui Tan, and Lining Tong

Methods and Applications of Analysis, Volume 28, No.2, pp. 155-174 (2021).

Dedicated to Professor Ling Hsiao's 80th birthday.


Abstract

We consider a compressible Euler system with singular velocity alignment, known as the Euler-alignment system, describing the flocking behaviors of large animal groups. We establish a local well-posedness theory for the system, as well as a global well-posedness theory for small initial data. We also show the asymptotic flocking behavior, where solutions converge to a constant steady state exponentially in time.


   doi:10.4310/MAA.2021.v28.n2.a3
 Download the Published Version
 This work is supported by NSF grant DMS #1853001
Page 5 of 10