Login
Register

Home

Research

Teaching

Events

Blog

Research
Research

Research

Here are the latest updates for Changhui Tan's research profile.

Here is the Curriculum Vitae and List of Publications.

Monday, 09 February 2015 23:45

Lovett instructor of Mathematics

I have recently accepted a 3-year Lovett instructor of Mathematics in Rice University. I will work with Professor Alex Kiselev. 

 

Jose A. Carrillo, Young-Pil Choi, Eitan Tadmor, and Changhui Tan

Mathematical Models and Methods in Applied Sciences, Volume 26, No 1, pp. 185-206 (2016).


Abstract

We study the critical thresholds for the compressible pressureless Euler equations with pairwise attractive or repulsive interaction forces and non-local alignment forces in velocity in one dimension. We provide a complete description for the critical threshold to the system without interaction forces leading to a sharp dichotomy condition between global-in-time existence or finite-time blowup of strong solutions. When the interaction forces are considered, we also give a classification of the critical thresholds according to the different type of interaction forces. We also remark on global-in-time existence when the repulsion is modeled by the isothermal pressure law.


   doi:10.1142/S0218202516500068
  Download the Published Version

 

Thomas Rey, and Changhui Tan

SIAM Journal on Numerical Analysis, Volume 54, No 2, pp. 641-664 (2016).


Abstract

In this work, we discuss kinetic descriptions of flocking models of the so-called Cucker–Smale [IEEE Trans. Automat. Control, 52 (2007), pp. 852–862] and Motsch–Tadmor [J. Statist. Phys., 144 (2011), pp. 923–947] types. These models are given by Vlasov-type equations where the interactions taken into account are only given long-range bi-particles interaction potentials. We introduce a new exact rescaling velocity method, inspired by the recent work [F. Filbet and T. Rey, J. Comput. Phys., 248 (2013) pp. 177–199], allowing us to observe numerically the flocking behavior of the solutions to these equations, without a need of remeshing or taking a very fine grid in the velocity space. To stabilize the exact method, we also introduce a modification of the classical upwind finite volume scheme which preserves the physical properties of the solution, such as momentum conservation.


   doi:10.1137/140993430
 Download the Published Version

 

Changhui Tan

Mathematical Models and Methods in Applied Sciences, Volume 27, No 7, pp. 1199-1221 (2017).


Abstract

We study kinetic representations of flocking models. They arise from agent-based models for self-organized dynamics, such as Cucker–Smale [Emergent behaviors in flocks, IEEE Trans. Autom. Control. 52 (2007) 852–862] and Motsch–Tadmor [A new model for self-organized dynamics and its flocking behavior, J. Statist. Phys. 144 (2011) 923– 947] models. We first establish a well-posedness theory and large-time flocking behavior for the kinetic systems, which indicates a concentration in velocity variable in infinite time. We then apply a discontinuous Galerkin method to treat the asymptotic \(\delta\)-singularity, and construct high-order positive-preserving schemes to solve kinetic flocking systems.


   doi:10.1142/S0218202517400139
 Download the Published Version
Thursday, 17 April 2014 16:01

Ph.D. Defense

 

I have finished my Ph.D. defense today.


Committees

Prof. Eitan Tadmor (Chair/Advisor), Prof. Pierre-Emmanuel Jabin, Prof. Dave Levermore, Prof. Antoine Mellet and Prof. Howard Elman (Dean's representative).


My thesis title is Multi-scale problems on collective dynamics and image processing.

   doi:10.13016/M2WG6T
 Download the Ph.D. Thesis
Page 7 of 8